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THE ORBITAL STABILITY OF THE TRAJECTORIES OF DYNAMIC SYSTEMS* 

G.A. LEONOV 

An orbital stability criterion, generating Poincare's criterion /l/ and 
the results of Hartman and Olech /2/, is derived. The application of 
this criteron is illustrated in the case of a two-dimensional dynamic 
system with an angular coordinate. The problem of the global asymptotic 
stability of the Lorens system is considered. 

Consider the system 

ax/at -= f (x), x E R” (1) 

where f(r) is a twice continuously differentiable vector-valued function. 
We shall say that a component Xj of the vector x is an angular coordinate if f(x,,...,xI, 

. ., x,,) - f (x,, . . ., ZJ + 2?1, . . ., t,,). 
Let s(t) be some trajectory of system (l), contained at t? 0 in a region GcR” 

which is bounded with respect to the con-angular coordinates. Henceforth we shall also 
assume that f(x)# 0 in the closure G of G. 

We now introduce a symmetric non-singular matrix H (x) = II A,. . . ., &II, where hi (x) are 
twice continuously differentiable vector-valued functions, and a twice continuously dif- 
ferentiable vector-valued function Q (I) satisfying the inequality f (x)*q (5) # 0, vx E G. 

Let Ho be a symmetric (n X n) matrix, h (r) a differentiable function, and tj and pi 
real sequences satisfying the conditions pi-( XI < 0, tj+l> tj, tjtl - TV < ~2, where XI and x2 
are numbers. 

We will also put 

(&f)=Ii$f *..., z&&fI], f=f(x) 

where ah/as is the Jacobian of the vector-valued function h(x) at 3~. 

Theorem 1. Assume that 

(2) 
hz*Hz, Vz E Iz I+ (z(t)) = 0) 

II E H(n;(t)), f = f(a$)), 4 =q(.l-Q)), A= w+)) 

Then, if the quadratic form z*H (x(t)) z is positive definite on the set {zlz*q(r(t)) -= 0) 
and moreover 

then the trajectory r(t) is orbitally asymptotically stable. 
If the quadratic form z*H (z(tJ)) Z is non-degenerate on the set (21 z*q (x(tJ))=O) , can 

take negative values and moreover 

Aj > -pj 

z*H (x (t)) z > z*H,z, t’z E {z [ Z*Q (x (t)) = 0} 

then the trajectory 5 (0 is orbitally unstable. 

Proof. Consider the set 
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a (6) = go (y / (y - .i.)* H (s)(y ~ s) = 6, (y - .q* q (z) = U), 5 : 2 (1) 

Here 6 is some sufficiently small number. 
Fixing a point !/II E Q (6) , we investigate the surface B (6) in a fairly small neighbour- 

hood of y,. Since y,~ Q(6), a number t 1 0 exists such that 

z*H (x) z : 6, z*q (x) = 0, z = y. - 5, z = riz (t) 

Let 7 be a number near t. Then 

.z (T) = 22 (t) + f (4))(r - q 

We will now define a mapping (throughout, unless otherwise stated, 
q = q (z), I = z (i)) 

f = f (z), K = K (2). 

c (Yo) y, t- a [f + Kzl 

which carries the point y, into the hyperplane 

CD,= c1w* 
i 

in such a way that 

w,*H (z -+ 

The number ? will be chos 

satisfy (5). Clearly, 

(T - t) f) 1L’o 2 6, U’o = u (y,) - (I + (t - Qf) (3) 

n so that u(y,) E a,, while the matrix K is chosen so as to 

jhq _ ;* gi 

rx = f*q ~I~q'K; (t-t) 

We are assuming here that i (T - t))' is large. Hence it follows that a sufficient con- 
dition for (5) to be valid is that 

It follows from (5) that a vector I(y,) normal to 0 (a! at the point yO can be deter- 
mined as follows: 

Note that 

1,'2 1 (y,) = (I - &)(I - Q) Ifz = (I - L2) Hz, L, = qZ,*/q*l, 

Therefore, 

Hence, using (6), we see that 

~l(y,)*I(y,)~z'{~(~_I)+B~- 

Hf+(f*c + v*# 

We can now show that the trajectory y(t) of system (1) passing at time t through 
will satisfy the following inclusion relation to within (X - t)" : 

Y (7) E Q (S + (T - t) 1 (yd*f (yo)) 

(TI 

Yll 

(8) 
To that end, we observe that for small (r--t) Y(T) = Y (t) + f (Y (t))(r - 1). Hence the vector y (T) 

lies, to within (T - f)", in the hyperplane L parallel to the hyperplane tangent to Q (6) 
and passing through the point 

Yo i- 1 (YcJl (Yol’f (Yd I 1 k/o) I-% (7 - t) 

It is also clear that L passes through the point Y, i- u lying on the hyperplane 
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where 

k I q (z (t))‘(s - z (f)) = 0) 

11 = I, (Y")l (YaFl (Ya) I I1 (Yo) I-* (z - 0 

Hence, using the relation 2 (yO - z (t))*HJz (t))u = (1 - t)l (Yo)*f (yd and the fact that the vectors 
normal to L and to R (I? + (T - t)Z (Y,)*/ (YJ) at the point Y, + u are identical to within (T - 0. 
we obtain (8). 

The inclusion relation (8), Eq.(7) and condition (2) of the theorem imply that for all 

r > t one has Y(T)E Q(cp(r)), where 'p(7) is some continuous function such that 

Using this inequality and conditions (3) and (4) of the theorem, and applying the 
standard Lyapunov technique /l, 21, we obtain the assertion of the theorem. 

Note that in the stable case, putting p (X) = H (2) f (z), h(z) E const , Theorem 1 implies 
an assertion similar to Theorem 14.2 in /2/. 

Now let us assume that the matrix in Theorem 1 has the form H(r) = lf(~)\‘1, h(Z) =&(x) + 

h2 (47 where h, and ha are eigenvalues of the matrix (afiax + af*ia2)/2 which satisfy the 
conditions h, > h? > . . . > A,. We then obtain the following assertion from Theorem 1 and 
well-known results /2/: 

Theorem 2. If a number E> 0 exists such that for some solution X (t)rG 

tt+l 
S p, (x(t)) -; ).! (Z (t))] dt < -E, Vi 

then x(t) is orbitally asymptotically stable. 
Theorem 2 may be viewed as a generalization, to some extent, of Poincare's criterion /l/ 

and the Hartman-Olech theorem /2/. 
Let us assume now that the set 2 is positively invariant and that I? contains a unique 

asymptotically stable equilibrium state of system (1). In that case, using Theorem 2 and 
arguments from /2/, we obtain the following 

Theorem 3. If for any solution X(t)F G inequality (9) is satisfied; then G is the 
domain of attraction of the stable equilibrium state. 

It is also-clear from Theorem 2 that if there is no 
inveriant set G, but inequality (9) is still true, then 
in G will approach one another as t->-t=. 

We will now consider some examples illustrating the 

Example 1. Consider the equation 

e'. -L aO' + cp (e) = 0 

equilibrium state in a positively 
trajectories of system (1) situated 

application of Theorems l-3. 

(10) 

where a is a positive number, and 'I' (0) is a twice differentiable 2n-periodic function with 
two zeros e1 and Bz in the set lo, 2n). Eq.(lO) describes the motion of a pendulum in a 
viscous medium /3/, the dynamics of a synchronous motor in its simplest idealization /4/, the 
operation of certain phase synchronization systems /5/, and the dynamics of Josephson junctions 

/6/. 

Let ‘P’ W + 0 and 

Then it is well-known /3/ that a number a,,>0 exists such that for a< ger one can 
find in the phase space of the system 

O'== q, 11' :z -_a7 - 'p (0) (11) 

a positively invariant set G1, bounded with respect to the coordinate ~1, which is filled 
with circular motions /3, 7/. Moreover, G, will also contain a limit cycle of the second 
kind. Since h, (z) + h, (2) = --a < 0 for system (111, it follows from Theorem 2 that a limit 
cycle of the second kind will be orbitally stable and G, is its domain of attraction. 

On the other hand, if ~<a,, the phase space of system (11) will contain a bounded 
positively invariant set G, which contains a unique asymptotically stable equilibrium state 

/3/. It follows at once from Theorem 3 that G, is the domain of attraction of this state. 
The only trajectories of system (11) for which the conditions of Theorem 2 do not all 
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hold are saddle-point equilibrium states and the separatrices that approach them as t--r?-,. 
(The condition that fails to hold here is z(t)~l:G. where G does not contain equilibrium 
states]. In the final analysis, therefore, the above-mentioned trajectories will be the 
boundaries of the domains of attraction of the stable equilibrium states and limit cycles of 
the second kind. 

This result is well-known /3/ and can be derived by other, different methods. It is 
worth noting here that the use of Theorem 2 and 3 involves a minimum of calculations. 

Example 2. Let us investigate the global asymptotic stability of the Lorenz system 18, 
91 

s' = -_d (2 - y), y’ -T 1‘1‘ - 1/ - XL, 1’ = -la -,- ry (12) 
d>O. r>l, b>O 

We recall that system (1) is said to be globally asymptotically stable if any of its 
solutions tends, as t- LX, to some equilibrium state /7/. 

If r>i system (12) has three equilibrium states. We can therefore combine the 
application of Theorem 3 with fairly well-developed estimates for attractors of system (12) 
/g-11/, thanks to which, for certain parameter values, one can state that an attractor of 
system (12) is contained in a set G, U G, u (0), where 6, and G, are disjoint bounded regions 
each of whose closures contains exactly one equilibrium state. 

Were we shall need the following simple assertion. 

Lemla. If t>z, an attractor of system (12) is contained in the set 

if b 4 ?, an attractor of system (12) is contained in the set 

{z ,- 0, y" -]- (z - r)" / 1-2, y" . rp - 1, 2% q i-2 - I} (1% 

The proof follows the same lines as the proof of the analogous result in ~'121. When 
b ‘- " we have 

[y (t)z f (z (1) - r.)? - I'?]' ; -b ]g (t)2 -t (i (1) - r)Z - r2] 

Hence 

(12) 

(12) 

The relation Iim,&.tCz z (t) > 0 was proved in /lo/. 

The fact that the sets {~a-+ (Z-T)% ._+. 1~1 = C) are contact-free for c>r and the estimate 
imply that &_co? ]z(1) I Cr. 

Let izn [z (1) / G, zli. Then it follows from this inequality, the second equation of system 
f-t- 

and (151, that 

The fact that the sets (y"-C (X - + g +, $ ,i Z&Z (1 -- .rk?)-l, ] z 1 = C] are contact-free for c2> 
zr*i" (1 + 2h-Y and the estimates (15) and (16) imply the inequality 

iz f_iu.T (I)% < XL+* (1 + ln-*)-' 

Putting z:+~ := shVV(l + Q'), z0 = P and letting k - 1) 
i: - 1. 

in this equality, we obtain lima.mxk2= 

This last relation proves the assertion of the lemma when b-q?. When b>z the proof 
proceeds along similar lines. 

We now present one of the simplest sufficient conditions for an attractor of system (12) 
to lie in the set C,~G,ii(O] /ll/: 

If b = 8i3, d =: 10 , condition (17) holds for F > 4. 
Since J.-i-h,-.- A, = -(dt b+ 1), a sufficient condition for the assumptions of Theorem 3 to 

be valid is that h,> ---(df b-t 1) on the sets (13) and (14). Applying Sylvester's criterion 
to the matrix 
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we see that the last inequality will hold provided that 

[(b + f)(b + d) - (d + r - z)*/4](d + 1) - (d + b)y% > 0 

on the sets (13) and (14). This inequality will hold if b>l, 

Thus, if conditions (17) and (18) are satisfied, then by Theorem 3 G, and G, are domains 
of attraction of stable equilibrium states and, consequently, system (12) will be globally 
asymptotically stable. Note that for b = S/3 and d=lO, inequality (18) will hold for 

any I. < 3.5. Thus, estimates (17), (18) are somewhat superior to Smith's estimate /13/ in 
some cases. We also point out that further improvement of the global asymptotic stability 
conditions obtained here can be achieved by applying the apparatus developed in /14, 15/ for 
estimating attractors of system (12). 
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